
CHAPTER FIVE

WORK, ENERGY AND POWER

5.1  INTRODUCTION

The terms ‘work’, ‘energy’ and ‘power’ are frequently used
in everyday language. A farmer ploughing the field, a
construction worker carrying bricks, a student studying for
a competitive examination, an artist painting a beautiful
landscape, all are said to be working. In physics, however,
the word ‘Work’ covers a definite and precise meaning.
Somebody who has the capacity to work for 14-16 hours a
day is said to have a large stamina or energy. We admire a
long distance runner for her stamina or energy. Energy is
thus our capacity to do work. In Physics too, the term ‘energy’
is related to work in this sense, but as said above the term
‘work’ itself is defined much more precisely. The word ‘power’
is used in everyday life with different shades of meaning. In
karate or boxing we talk of ‘powerful’ punches. These are
delivered at a great speed. This shade of meaning is close to
the meaning of the word ‘power’ used in physics. We shall
find that there is at best a loose correlation between the
physical definitions and the physiological pictures these
terms generate in our minds. The aim of this chapter is to
develop an understanding of these three physical quantities.
Before we proceed to this task, we need to develop a
mathematical prerequisite, namely the scalar product of two
vectors.

5.1.1 The Scalar Product

We have learnt about vectors and their use in Chapter 3.
Physical quantities like displacement, velocity, acceleration,
force etc. are vectors. We have also learnt how vectors are
added or subtracted. We now need to know how vectors are
multiplied. There are two ways of multiplying vectors which
we shall come across : one way known as the scalar product
gives a scalar from two vectors and the other known as the
vector product produces a new vector from two vectors. We
shall look at the vector product in Chapter 6. Here we take
up the scalar product of two vectors. The scalar product or
dot product of any two vectors A and B, denoted as A.B (read
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A dot B) is defined as

A.B = A B cos θ (5.1a)

where θ  is the angle between the two vectors as
shown in Fig. 5.1(a). Since A, B and cos θ are
scalars, the dot product of A and B is a scalar
quantity. Each vector, A and B, has a direction
but their scalar product does not have a
direction.

From Eq. (5.1a), we have

A.B  = A (B cos θ )
       = B (A cos θ )

Geometrically, B cos θ is the projection of B onto
A in Fig.5.1 (b) and A cos θ  is the projection of A
onto B in Fig. 5.1 (c). So, A.B is the product of
the magnitude of A and the component of B along
A. Alternatively, it is the product of the
magnitude of B and the component of A along B.

Equation (5.1a) shows that the scalar product
follows the commutative law :

A.B = B.A

Scalar product obeys the distributive

law:

A. (B + C) = A.B + A.C

Further, A. (λ B) = λ (A.B)

where λ is a real number.

The proofs  of the above equations are left to
you as an exercise.

For unit vectors ɵ ɵ ɵi, j,k  we have

ɵ ɵ ɵ ɵ ɵ ɵi i j j k k⋅ = ⋅ = ⋅ =1

ɵ ɵ ɵ ɵ ɵ ɵi j j k k i⋅ = ⋅ = ⋅ = 0

Given two vectors

A i j k= + +A A Ax y z
ɵ ɵ ɵ

B i j k= + +B B Bx y z
ɵ ɵ ɵ

their scalar product is

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ. .
x y z x y zA A A B B B= + + + +A B i j k i j k

 = + +A B A B A Bx x y y z z (5.1b)

From the definition of scalar product and
(Eq. 5.1b) we have :

( i ) x x y y z zA A A A A A= + +A A.

Or, A A A A
2

x

2

y

2

z

2= + + (5.1c)

since A.A = |A ||A| cos 0 = A2.
(ii) A.B = 0, if A and B are perpendicular.

Example 5.1  Find the angle between force

F = (3 +4 -5 )ˆ ˆ ˆi j k unit and displacement

d = (5 + 4 +3 )ˆ ˆ ˆi j k unit. Also find the

projection of F on d.

Answer F.d = x x y y z zF d F d F d+ +
= 3 (5) + 4 (4) + (– 5) (3)
= 16 unit

Hence F.d = cosF d θ  = 16 unit

Now F.F = 2 2 2 2  x y zF F F F= + +
= 9 + 16 + 25
= 50 unit

and d.d = d2 = 2 2 2  x y zd d d+ +
= 25 + 16 + 9
= 50 unit

∴  cos θ = 
16 16

= = 0.32
5050 50

,

θ = cos–1  0.32

Fig. 5.1 (a) The scalar product of two vectors A and B is a scalar : A.B = A B cos θ.  (b) B cos θ is the projection

of B onto A. (c) A cos θ is the projection of A onto B.

u
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to be proportional to the speed of the drop
but is otherwise undetermined.  Consider
a drop of mass 1.00 g falling from a height
1.00 km.  It hits the ground with a speed of
50.0 m s-1.  (a) What is the work done by the
gravitational force ? What is the work done
by the unknown resistive force?

Answer (a) The change in kinetic energy of the
drop is

21
0

2
K m v∆ = −

=
1

2
10 50 50-3× × ×

= 1.25 J

where we have assumed that the drop is initially
at rest.

Assuming that g is a constant with a value
10 m/s2, the work done by the gravitational force
is,

W
g 
= mgh

      = 10-3 ×10 ×103

      = 10.0 J

(b) From the work-energy theorem

g rK  W W∆ =  +
where W

r
  is the work done by the resistive force

on the raindrop.  Thus
W

r 
 = ∆K − Wg

     = 1.25 −10
      = − 8.75 J

is negative. ⊳

5.3  WORK

As seen earlier, work is related to force and the
displacement over which it acts.  Consider a
constant force F acting on an object of mass m.
The object undergoes a displacement d in the
positive x-direction as shown in Fig. 5.2.

Fig. 5.2 An object undergoes a displacement d

under the influence of the force F.

5.2 NOTIONS OF WORK AND KINETIC
ENERGY: THE WORK-ENERGY THEOREM

The following relation for rectilinear motion under
constant acceleration a has been encountered
in Chapter 3,

      v2 − u2 = 2 as (5.2)

where u and v  are the initial and final speeds
and s the distance traversed.  Multiplying both
sides by m/2, we have

2 21 1

2 2
mv mu mas Fs− = = (5.2a)

where the last step follows from Newton’s Second
Law. We can generalise Eq. (5.2) to three
dimensions by employing vectors

v2 − u2 = 2 a.d

Here a and d are acceleration and displacement
vectors of the object respectively.
Once again multiplying both sides by m/2 , we obtain

2 21 1

2 2
mv mu m − = =a.d F.d (5.2b)

The above equation provides a motivation for
the definitions of work and kinetic energy. The
left side of the equation is the difference in the
quantity ‘half the mass times the square of the
speed’ from its initial value to its final value. We
call each of these quantities the ‘kinetic energy’,
denoted by K. The right side is a product of the
displacement and the component of the force
along the displacement.  This quantity is called
‘work’ and is denoted by W.  Eq. (5.2b) is then

K
f 
−  K

i 
= W (5.3)

where K
i
  and K

f
  are respectively the initial and

final kinetic energies of the object. Work refers
to the force and the displacement over which it
acts. Work is done by a force on the body over
a certain displacement.

Equation (5.2) is also a special case of the
work-energy (WE) theorem : The change in
kinetic energy of a particle is equal to the
work done on it by the net force. We shall
generalise the above derivation to a varying force
in a later section.

Example 5.2  It is well known that a
raindrop falls under the influence of the
downward gravitational force and the
opposing resistive force.  The latter is known
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Table 5.1   Alternative Units of Work/Energy in J

Example 5.3  A cyclist comes to a skidding
stop in 10 m.  During this process, the force
on the cycle due to the road is 200 N and
is directly opposed to the motion.  (a) How
much work does the road do on the cycle ?
(b) How much work does the cycle do on
the road ?

Answer  Work done on the cycle by the road is

the work done by the stopping (frictional) force

on the cycle due to the road.

(a) The stopping force and the displacement make

an angle of 180o  (π rad) with each other.

Thus, work done by the road,

W
r
 =  Fd cosθ

     =  200 × 10 × cos π
      = – 2000 J

It is this negative work that brings the cycle

to a halt in accordance with WE theorem.

(b) From Newton’s Third Law an equal and

opposite force acts on the road due to the

cycle. Its magnitude is 200 N. However, the

road undergoes no displacement.  Thus,

work done by cycle on the road is zero.            ⊳

The lesson of Example 5.3 is that though the

force on a body A exerted by the body B is always

equal and opposite to that on B by A (Newton’s

Third Law); the work done on A by B is not

necessarily equal and opposite to the work done

on B by A.

5.4  KINETIC ENERGY

As noted earlier, if an object of mass m has

velocity v, its kinetic energy K  is

2K m mv
1 1= =
2 2

v v.                        (5.5)

Kinetic energy is a scalar quantity. The kinetic

energy of an object is a measure of the work an

The work done by the force is defined to be

the product of component of the force in the

direction of the displacement and the

magnitude of this displacement.  Thus

W = (F cos θ )d = F.d (5.4)

We see that if there is no displacement, there

is no work done even if the force is large.  Thus,

when you push hard against a rigid brick wall,

the force you exert on the wall does no work.  Yet

your muscles are alternatively contracting and

relaxing and internal energy is being used up

and you do get tired.  Thus, the meaning of work

in physics is different from its usage in everyday

language.

No work is done if :

(i) the displacement is zero as seen in the

example above. A weightlifter holding a 150

kg mass steadily on his shoulder for 30 s

does no work on the load during this time.

(ii) the force is zero.  A block moving on a smooth

horizontal table is not acted upon by a

horizontal force (since there is no friction), but

may undergo a large displacement.

(iii) the force and displacement are mutually

perpendicular. This is so since, for θ = π/2 rad

(= 90o), cos (π/2) = 0.  For the block moving on

a smooth horizontal table, the gravitational

force mg  does no work since it acts at right

angles to the displacement. If we assume that

the moon’s orbits around the earth is

perfectly circular then the earth’s

gravitational force does no work.  The moon’s

instantaneous displacement is tangential

while the earth’s force is radially inwards and

θ  = π/2.

Work can be both positive and negative.  If θ  is

between 0o and 90o, cos θ  in Eq. (5.4) is positive.

If  θ  is  between 90o and 180o,   cos θ  is negative.

In many examples the frictional force opposes

displacement and θ  = 180o. Then the work done

by friction is negative (cos 180o = –1).

From Eq. (5.4) it is clear that  work and energy

have the same dimensions,  [ML2T–2]. The SI unit

of these is joule (J), named after the famous British

physicist James Prescott Joule  (1811-1869). Since

work and energy are so widely used as physical

concepts, alternative units abound and some of

these are listed in Table 5.1.
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object can do by the virtue of its motion. This

notion has been intuitively known for a long time.

The kinetic energy of a fast flowing stream

has been used to grind corn. Sailing

ships employ the kinetic energy of the wind. Table

5.2 lists the kinetic energies for various

objects.

Example 5.4  In a ballistics demonstration
a police officer fires a bullet of mass 50.0 g
with speed 200 m s-1 (see Table 5.2) on soft
plywood of thickness 2.00 cm.  The bullet
emerges with only 10% of its initial kinetic
energy.  What is the emergent speed of the
bullet ?

Answer  The initial kinetic energy of the bullet
is mv2/2 = 1000 J.  It has a final kinetic energy
of 0.1×1000 = 100 J.  If v

f
  is the emergent speed

of the bullet,

1

2
=mv f

2
100 J

kg 05.0

 J 1002 ×=fv

                =  63.2 m s–1

The speed is reduced by approximately 68%
(not 90%).                                                                      ⊳

5.5  WORK DONE BY A VARIABLE FORCE

A constant force is rare.  It is the variable force,
which is more commonly encountered.  Fig. 5.3
is a plot of a varying force in one dimension.

If the displacement ∆x is small, we can take
the force F (x)  as approximately constant and
the work done is then

∆W =F (x) ∆x

Table 5.2  Typical kinetic energies (K)

This is illustrated in Fig. 5.3(a).  Adding
successive rectangular areas in Fig. 5.3(a) we
get the total work done as

( )∑ ∆≅
f

i

x

x

xxFW (5.6)

where the summation is from the initial position
x

i
 
 
to the final position x

f
.

If the displacements are allowed to approach
zero, then the number of terms in the sum
increases without limit, but the sum approaches
a definite value equal to the area under the curve
in Fig. 5.3(b). Then the work done is

          = ( )∫ F x x
x

x

i

f

d (5.7)

where ‘lim’ stands for the limit of the sum when
∆x  tends to zero.  Thus, for a varying force
the work done can be expressed as a definite
integral of force over displacement (see also
Appendix 3.1).

limW =
lim

x∆ →
( )∑ ∆

f

i

x

x

xxF
0

Fig. 5.3(a)
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Fig. 5.3 (a) The shaded rectangle represents the

work done by the varying force F(x), over

the small displacement ∆x,  ∆W = F(x) ∆x.

(b) adding the areas of all the rectangles we

find that for ∆x → 0, the area under the curve

is exactly equal to the work done by F(x).

Example 5.5  A woman pushes a trunk on
a railway platform which has a rough
surface.  She applies a force of 100 N over a
distance of 10 m.  Thereafter, she gets
progressively tired and her applied force
reduces linearly with distance to 50 N.  The
total distance through which the trunk has
been moved is 20 m.  Plot the force applied
by the woman and the frictional force, which
is 50 N versus displacement.  Calculate the
work done by the two forces over 20 m.

Answer

Fig. 5.4 Plot of the force F applied by the woman and

the opposing frictional force f versus

displacement.

The plot of the applied force is shown in Fig.
5.4.  At x  = 20 m, F  = 50 N (≠ 0).  We are given
that the frictional force f is |f|= 50 N. It opposes
motion and acts in a direction opposite to F.  It
is therefore, shown on the negative side of the
force axis.

The work done by the woman is

W
F 
→ area of the rectangle ABCD + area of

the trapezium CEID

( )WF = × + + ×100 10
1

2
100 50 10

       = 1000 + 750
      = 1750 J

The work done by the frictional force is

W
f 
→ area of the rectangle AGHI
W

f
  = (−50) × 20

      = − 1000 J
The area on the negative side of the force axis
has a negative sign. ⊳

5.6 THE WORK-ENERGY THEOREM FOR A
VARIABLE FORCE

We are now familiar with the concepts of work
and kinetic energy to prove the work-energy
theorem for a variable force.  We confine
ourselves to one dimension. The time rate of
change of kinetic energy is

d

d

d

d

K

t t
m v= 





1

2
2

      
d

d

v
m v

t
=

      v F=  (from Newton’s Second Law)

      
d

d

x
F

t
=

Thus
             dK = Fdx

Integrating from the initial position  (x 
i
 ) to final

position ( x 
f
 ), we have

d dK F x
K

K

x

x

i

f

i

f

∫ ∫=

where,  K
i
  and K 

f
  are the initial and final kinetic

energies corresponding to x
 i 
 and

 
 x 

f
.

or K K F xf i

x

x

i

f

− = ∫ d  (5.8a)

From Eq. (5.7), it follows that

           K
f
 −  K

i  
= W (5.8b)

Thus, the WE theorem is proved for a variable

force.

While the WE theorem is useful in a variety of

problems, it does not, in general, incorporate the

complete dynamical information of Newton’s

second law. It is an integral form of Newton’s

second law. Newton’s second law is a relation

between acceleration and force at any instant of

time. Work-energy theorem involves an integral

over an interval of time. In this sense, the temporal

(time) information contained in the statement of

Newton’s second law is ‘integrated over’ and is
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not available explicitly. Another observation is that
Newton’s second law for two or three dimensions
is in vector form whereas the work-energy
theorem is in scalar form. In the scalar form,
information with respect to directions contained
in Newton’s second law is not present.

Example 5.6  A block of mass m  = 1 kg,
moving on a horizontal surface with speed
v

i
 = 2 m s–1 enters a rough patch ranging

from x = 0.10 m to x = 2.01 m. The retarding
force F

r
 on the block in this range is inversely

proportional  to x  over this range,

F
k

x
r = −

 for 0.1 < x < 2.01 m

= 0 for x < 0.1m and x > 2.01 m
where k = 0.5 J.  What is the final kinetic
energy and speed v

f
  of the block as it

crosses this patch ?

Answer  From Eq. (5.8a)

K K
k

x
xf i

0.1

2.01

= +
−( )

∫ d

( ) 2.01

0.1

1
ln

2

2
imv k x= −

( )1
ln 2.01/0.1

2

2
imv k  = −

= 2 − 0.5 ln (20.1)

= 2 − 1.5  = 0.5 J

1
sm  1/2

−== mKv ff

Here, note that ln is a symbol for the natural
logarithm to the base e and not the logarithm to
the base 10 [ln X = log

e
 X = 2.303 log

10
 X]. ⊳

5.7  THE CONCEPT OF POTENTIAL ENERGY

The word potential suggests possibility or
capacity for action. The term potential energy
brings to one’s mind ‘stored’ energy. A stretched
bow-string possesses potential energy. When it
is released, the arrow flies off at a great speed.
The earth’s crust is not uniform, but has
discontinuities and dislocations that are called
fault lines. These fault lines in the earth’s crust

are like ‘compressed springs’. They possess a
large amount of potential energy. An earthquake
results when these fault lines readjust. Thus,
potential energy is the ‘stored energy’ by virtue
of the position or configuration of a body. The
body left to itself releases this stored energy in
the form of kinetic energy. Let us make our notion
of potential energy more concrete.

The gravitational force on a ball of mass m is
mg . g may be treated as a constant near the earth
surface. By ‘near’ we imply that the height h  of
the ball above the earth’s surface is very small
compared to the earth’s radius R

E 
(h <<R

E
) so that

we can ignore the variation of g near the earth’s

surface*. In what follows we have taken the

upward direction to be positive. Let us raise the
ball up to a height h. The work done by the external
agency against the gravitational force is mgh. This
work gets stored as potential energy.
Gravitational potential energy of an object, as a
function of the height h, is denoted by V(h) and it
is the negative of work done by the gravitational
force in raising the object to that height.

V (h) = mgh
If h is taken as a variable, it is easily seen that
the gravitational force F equals the negative of
the derivative of V(h) with respect to h. Thus,

d

d
F V(h) m g

h
= − = −

The negative sign indicates that the
gravitational force is downward. When released,
the ball comes down with an increasing speed.
Just before it hits the ground, its speed is given
by the kinematic relation,

v2 = 2gh
This equation can be written as

2

1
m v2 = m g h

which shows that the gravitational potential
energy of the object at height h, when the object
is released, manifests itself as kinetic energy of
the object on reaching the ground.

Physically, the notion of potential energy is
applicable only to the class of forces where work
done against the force gets ‘stored up’ as energy.
When external constraints are removed, it
manifests itself as kinetic energy. Mathematically,
(for simplicity, in one dimension) the potential

* The variation of g with height is discussed in Chapter 7 on Gravitation.
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energy V(x) is defined if the force F(x) can be
written as

( ) d

d

V
F x

x
= −

This implies that

F(x) x V V V
x

x

i f

V

V

i

f

i

f

d d∫ ∫= − = −

The work done by a conservative force such as

gravity depends on the initial and final positions

only. In the previous chapter we have worked

on examples dealing with inclined planes. If an

object of mass m is released from rest, from the

top of a smooth (frictionless) inclined plane of

height h, its speed at the bottom

is gh2 irrespective of the angle of inclination.

Thus, at the bottom of the inclined plane it

acquires a kinetic energy, mgh. If the work done

or the kinetic energy did depend on other factors

such as the velocity or the particular path taken

by the object, the force would be called non-

conservative.
The  dimensions  of  potential  energy are

[ML2T –2] and the unit is joule (J), the same as
kinetic energy or work. To reiterate, the change
in potential energy, for a conservative force,
∆V  is equal to the negative of the work done by
the force

∆V = − F(x) ∆x (5.9)

In the example of the falling ball considered in

this section we saw how potential energy was

converted to kinetic energy. This hints at an

important principle of conservation in mechanics,

which we now proceed to examine.

5.8 THE CONSERVATION OF MECHANICAL
ENERGY

For simplicity we demonstrate this important

principle for one-dimensional motion. Suppose

that a body undergoes displacement ∆x under

the action of a conservative force F. Then from

the WE theorem we have,
∆K =  F(x) ∆x

If the force is conservative, the potential energy
function V(x) can be defined such that

− ∆V  =  F(x) ∆x

The above equations imply that
∆K + ∆V = 0
∆(K + V ) = 0 (5.10)

which means that K + V, the sum of the kinetic

and potential energies of the body is a constant.

Over the whole path, x
i 
to x

f
, this means that

K
i
 + V(x

i
) = K

f
  + V(x

f
) (5.11)

The quantity K +V(x), is called the total

mechanical energy of the system.  Individually

the kinetic energy K  and the potential energy

V(x) may vary from point to point,  but the sum

is a constant. The aptness of the term

‘conservative force’ is now clear.

Let us consider some of  the definitions of a

conservative force.

l A force F(x) is conservative if it can be derived

from a scalar quantity V(x) by the relation
given by Eq. (5.9). The three-dimensional
generalisation requires the use of a vector
derivative, which is outside the scope of this
book.

l The work done by the conservative force
depends only on the end points. This can be
seen from the relation,

W = K
f
 – K

i
 = V (x

i
) – V(x

f
)

which depends on the end points.
l A third definition states that the work done

by this force in a closed path is zero.  This is
once  again apparent from Eq. (5.11) since
x

i
  = x

f .

Thus, the principle of conservation of total
mechanical energy can be stated as

The total mechanical energy of a system is
conserved if the forces, doing work on it, are
conservative.

The above discussion can be made more
concrete by considering the example of the
gravitational force once again and that of the
spring force in the next section. Fig. 5.5 depicts
a ball of mass m being dropped from a cliff of
height H.

Fig. 5.5 The conversion of potential energy to kinetic

energy for a ball of mass m dropped from a

height H.
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The total mechanical energies E
0
, E

h
, and E

H

of the ball at the indicated heights zero (ground
level), h and H, are

E
H
   = mgH                             (5.11 a)

1

2

2
h hE mgh mv= + (5.11 b)

E
0     

= (1/2) mv
f
2 (5.11 c)

The constant force is a special case of a spatially
dependent force F(x). Hence, the mechanical
energy is conserved.  Thus

E
H
 = E

0

or,
1

2

2
fmgH mv=

2fv gH=
a result that was obtained in section 5.7 for a
freely falling body.
Further,

E
H
 = E

h

which implies,

v g(H h)h
2

2= −               (5.11 d)

and is a familiar result from kinematics.
At the height H, the energy is purely potential.

It is partially converted to kinetic at height h  and
is fully kinetic at ground level. This illustrates
the conservation of mechanical energy.

Example 5.7  A bob of mass m is suspended
by a light string of length L .  It is imparted a
horizontal velocity v

o
 at the lowest point A

such that it completes a semi-circular
trajectory in the vertical plane with the string
becoming slack only on reaching the topmost
point, C.  This is shown in Fig. 5.6. Obtain an
expression for (i) v

o
; (ii)  the speeds at points

B and C; (iii) the ratio  of  the kinetic energies
(K

B
/K

C
) at B and C. Comment on the nature

of the trajectory of the bob after it reaches
the point C.

Fig. 5.6

Answer  (i)  There are two external forces on
the bob : gravity and the tension (T ) in the

string. The latter does no work since the
displacement of the bob is always normal to the
string. The potential energy of the bob is thus
associated with the gravitational force only. The

total mechanical energy E  of the system is
conserved.  We take the potential energy of the
system to be zero at the lowest point A. Thus,
at A :

E mv0

2=
1

2
(5.12)

       [Newton’s Second Law]

where T
A
 is the tension  in the string at A. At the

highest point C, the string slackens, as the
tension in the string (T

C
) becomes zero.

Thus, at C

2mgLmvE c += 2

2

1
(5.13)

L

mv
mg

2

c=     [Newton’s Second Law] (5.14)

where v
C
 is the speed at C. From Eqs. (5.13)

and (5.14)

5
E mgL

2
=

Equating this to the energy at A

5

2 2

2
0

m
mgL v=

or, 50v gL=

(ii) It is clear from Eq. (5.14)

gLvC =

At B, the energy is

1

2

2
BE mv mgL= +

Equating this to the energy at A and employing

the result from (i), namely gLv2

0 5= ,

1 1

2 2

2 2
B 0mv mgL mv+ =

5

2
m g L=
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gLvB 3=∴

(iii) The ratio of the kinetic energies at B and C
  is :

 
1

3
  

2

1
2

1

  ==
2
C

2
B

C

B

mv

mv

K

K

At point C, the string becomes slack and the
velocity of the bob is horizontal and to the left.  If
the connecting string is cut at this instant, the
bob will execute a projectile motion with
horizontal projection akin to a rock kicked
horizontally from the edge of a cliff.  Otherwise
the bob will continue on its circular path and
complete the revolution.             ⊳

5.9  THE POTENTIAL ENERGY OF A SPRING

The spring force is an example of a variable force
which is conservative. Fig. 5.7 shows a block
attached to a spring and resting on a smooth
horizontal surface.  The other end of the spring
is attached to a rigid wall. The spring is light
and may be treated as massless.  In an ideal
spring, the spring force F

s
  is proportional to

x where x  is the displacement of the block from
the equilibrium position. The displacement could
be either positive [Fig. 5.7(b)] or negative
[Fig. 5.7(c)].  This force law for the spring is called
Hooke’s law and is mathematically stated as

F
s
 =  − kx

The constant k is called the spring constant.  Its
unit is N m-1.  The spring is said to be stiff if k is
large and soft if k is small.

Suppose that we pull the block outwards as in
Fig. 5.7(b). If the extension is x

m
, the work done by

the spring force is

W F  xs s

0

xm

= ∫ d     = − ∫ kx x
0

xm

d

2

2
mx k−=     (5.15)

This expression may also be obtained by
considering the area of the triangle as in
Fig. 5.7(d).  Note that the work done by the
external pulling force F is positive since it
overcomes the spring force.

2

2
mx k

W += (5.16)

Fig. 5.7 Illustration of the spring force with a block

attached to the free end of the spring.

(a) The spring force F
s
 is zero when the

displacement x  from the equilibrium position

is zero. (b) For the stretched spring x > 0

and F
s  

< 0 (c) For the compressed spring

x < 0 and  F
s
 > 0.(d) The plot of F

s
  versus x.

The area of the shaded triangle represents

the work done by the spring force. Due to the

opposing signs of Fs and x, this work done is

negative, W kx /s m

2= − 2 .

The same is true when the spring is
compressed with a displacement x

c
 (< 0).  The

spring force does work 2/ 2
cs kxW −=  while the
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Fig. 5.8 Parabolic plots of the potential energy V and

kinetic energy K of a block attached to a

spring obeying Hooke’s law. The two plots

are complementary, one decreasing as the

other increases. The total mechanical

energy E = K + V remains constant.

⊳

external force F does work + kxc

2
/ 2 . If the block

is moved from an initial displacement x
i
  to a

final displacement x
f
 , the work done by the

spring force W
s
 is

  W k x x 
k x k x

s

x

x

i f

i

f

= − = −∫ d     
2 2

2 2            
(5.17)

Thus the work done by the spring force depends
only on the end points.  Specifically, if the block
is pulled from x

i
  and allowed to return to x

i
 ;

      W k x x       
k x k x

 s
i i

x

x

i

i

= − = −∫ d     
2 2

2 2

       = 0 (5.18)
The work done by the spring force in a cyclic
process is zero.  We have explicitly demonstrated
that the spring force (i) is position dependent
only as first stated by Hooke, (F

s
 = − kx); (ii)

does work which only depends on the initial and
final positions, e.g. Eq. (5.17).  Thus, the spring
force is a conservative force.

We define the potential energy V(x) of the spring
to be zero when block and spring system is in the
equilibrium position.  For an extension (or
compression) x  the above analysis suggests that

V(x)
kx 2

=
2

(5.19)

You may easily verify that − dV/dx = − k x, the
spring force.  If the block of mass m in Fig. 5.7 is
extended to x

m
 and released from rest, then its

total mechanical energy at any arbitrary point x,
where x lies between – x

m 
 and + x

m,
 will be given by

222
m v mx kx k

2

1

2

1

2

1 +=

where we have invoked the conservation of
mechanical energy.  This suggests that the speed
and the kinetic energy will be maximum at the
equilibrium position, x = 0, i.e.,

2
m

2
m x k  v m

2

1

2

1 =

where v
m
 is the maximum speed.

or mm x 
m

k
v =

Note that k/m has the dimensions of [T-2] and
our equation is dimensionally correct. The
kinetic energy gets converted to potential energy

and vice versa, however, the total mechanical
energy remains constant. This is graphically
depicted in Fig. 5.8.

Example 5.8  To simulate car accidents, auto
manufacturers study the collisions of moving
cars with mounted springs of different spring
constants.  Consider a typical simulation with
a car of mass 1000 kg moving with a speed
18.0 km/h on a smooth road and colliding
with a horizontally mounted spring of spring
constant 5.25 × 103 N m–1. What is the
maximum compression of the spring ?

Answer   At maximum compression the kinetic
energy of the car is converted entirely into the
potential energy of the spring.

The kinetic energy of the moving car is

K mv2=
1

2

    
5510

2

1 3 ×××=

            K  = 1.25 × 104 J

where we have converted 18 km h–1 to 5 m s–1  [It is
useful to remember that 36 km h–1 = 10 m s–1].
At maximum compression x

m
, the potential

energy V of the spring is equal to the kinetic
energy K of the moving car from the principle of
conservation of mechanical energy.

2
mx k  V

2

1=
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⊳

                = 1.25 × 104 J
We obtain

x
m
 = 2.00 m

We note that we have idealised the situation.
The spring is considered to be massless. The
surface has been considered to possess
negligible friction. ⊳

We conclude this section by making a few
remarks on conservative forces.

(i) Information on time is absent from the above

discussions. In the example considered

above, we can calculate the compression, but
not the time over which the compression

occurs.  A solution of Newton’s Second Law

for this system is required for temporal
information.

(ii) Not all forces are conservative. Friction, for

example, is a non-conservative force. The
principle of conservation of energy will have

to be modified in this case. This is illustrated

in Example 5.9.
(iii) The zero of the potential energy is arbitrary.

It is set according to convenience.  For the

spring force we took V(x) = 0, at x = 0, i.e. the
unstretched spring had zero potential

energy.  For the constant gravitational force
mg, we took V = 0  on the earth’s surface.  In

a later chapter we shall see that for the force

due to the universal law of gravitation, the
zero is best defined at an infinite distance

from the gravitational source. However, once

the zero of the potential energy is fixed in a
given discussion, it must be consistently

adhered to throughout the discussion. You

cannot change horses in midstream !

Example 5.9   Consider Example 5.8 taking
the coefficient of friction, µ, to be 0.5 and
calculate the  maximum compression of the
spring.

Answer  In presence of friction, both the spring

force and the frictional force act so as to oppose

the compression of the spring as shown in

Fig. 5.9.

We invoke the work-energy theorem, rather

than the conservation of mechanical energy.

The change in kinetic energy is

Fig. 5.9  The forces acting on the car.

∆K  = K
f
 − K

i 

2v m   
2

1
0 −=

The work done by the net force is

1

2
2
m mW   kx   m g x= − − µ

Equating we have

1 1

2 2
2 2

m mm v   k x  m g x= + µ

Now  µmg  = 0.5 × 103 × 10 = 5 × 103 N (taking
g =10.0 m s-2). After rearranging the above
equation we obtain the following quadratic
equation in the unknown x

m
.

22 2
m mk x m g x m v 0+ − =µ

where we take the positive square root since
x

m
 is positive. Putting in numerical values we

obtain

x
m
  = 1.35 m

which, as expected, is less than the result in
Example 5.8.

If the two forces on the body consist of a
conservative force F

c
 and a non-conservative

force  F
nc
 , the conservation of mechanical energy

formula will have to be modified. By the WE
theorem

(F
c
+ F

nc
) ∆x = ∆K

But     F
c
 ∆x = − ∆V

Hence,             ∆(K + V) = F
nc 

∆x

                       ∆E    = F
nc 

∆x

where E  is the total mechanical energy. Over
the path this assumes the form

E
f
 −−−−− E

i
  = W

nc

where W
nc

  is the total work done by the
non-conservative forces over the path. Note that
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Our electricity bills carry the energy
consumption in units of kWh.  Note that kWh is
a unit of energy and not of power.

Example 5.10  An elevator can carry a
maximum load of 1800 kg (elevator +
passengers) is moving up with a constant
speed of 2 m s–1. The frictional force opposing
the motion is 4000 N. Determine the
minimum power delivered by the motor to
the elevator in watts as well as in horse
power.

Answer  The downward force on the elevator is

F = m g + F
f
 = (1800 × 10) + 4000 = 22000 N

The motor must supply enough power to balance
this force.  Hence,

P = F. v = 22000 × 2 = 44000 W = 59 hp         ⊳

5.11  COLLISIONS

In physics we study motion (change in position).
At the same time, we try to discover physical
quantities, which do not change in a physical
process. The laws of momentum and energy
conservation are typical examples. In this
section we shall apply these laws to a commonly
encountered phenomena, namely collisions.
Several games such as billiards, marbles or
carrom involve collisions.We shall study the
collision of two masses in an idealised form.

Consider two masses m
1
 and m

2
.  The particle

m
1
 is moving with speed v

1i 
, the subscript ‘i’

implying initial. We can cosider m
2
  to be at rest.

No loss of generality is involved in making such
a selection. In this situation the  mass m

1

collides  with  the stationary  mass m
2
  and  this

is depicted in  Fig. 5.10.

Fig. 5.10 Collision of mass m
1
, with a stationary mass m

2
.

The masses m
1
 and m

2
 fly-off in different

directions.  We shall see that there are
relationships, which connect the masses, the
velocities and the angles.

u

unlike the conservative force, W
nc  

depends on
the particular path i  to  f. ⊳

5.10  POWER

Often it is interesting to know not only the work
done on an object, but also the rate at which
this work is done. We say a person is physically
fit if he not only climbs four floors of a building
but climbs them fast. Power is defined as the
time rate at which work is done or energy is
transferred.

The average power of a force is defined as the
ratio of the work, W, to the total time t taken

P
W

t
av =

The instantaneous power is defined as the
limiting value of the average power as time
interval approaches zero,

d

d

W
P

t
= (5.20)

The work dW done by a force F for a displacement
dr is dW = F.dr.  The instantaneous power can
also be expressed as

d

d
P

t
= F.

r

= F.v (5.21)

where v is the instantaneous velocity when the
force is F.

Power, like work and energy, is a scalar
quantity.  Its dimensions are [ML2T–3]. In the SI,
its unit is called a watt (W).  The watt is 1 J s–1.
The unit of power is named after James Watt,
one of the innovators of the steam engine in the
eighteenth century.

There is another unit of power, namely the
horse-power (hp)

1 hp = 746 W
This unit is still used to describe the output of
automobiles, motorbikes, etc.

We encounter the unit watt when we buy
electrical goods such as bulbs, heaters and
refrigerators.  A 100 watt bulb which is on for 10
hours uses 1 kilowatt hour (kWh) of energy.

100 (watt) × 10 (hour)
= 1000 watt hour
=1 kilowatt hour (kWh)
= 103 (W) × 3600 (s)
= 3.6 × 106 J
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5.11.1  Elastic and  Inelastic Collisions

In all collisions the total linear momentum is
conserved; the initial momentum of the system
is equal to the final momentum of the system.
One can argue this as follows.  When two objects
collide, the mutual impulsive forces acting over
the collision time ∆t cause a change in their
respective momenta :

∆p
1 
= F

12  
∆t

∆p
2 
= F

21  
∆t

where F
12

 is  the force exerted on the first particle
by the second particle. F

21 
is likewise the force

exerted on the second particle by the first particle.
Now from Newton’s third law, F

12
 = − F

21
.  This

implies

∆p
1 
+ ∆p

2 
=  0

The above conclusion is true even though the
forces vary in a complex fashion during the
collision time ∆t. Since the third law is true at
every instant, the total impulse on the first object
is equal and opposite to that on the second.

On the other hand, the total kinetic energy of
the system is not necessarily conserved. The
impact and deformation during collision may
generate heat and sound. Part of the initial kinetic
energy is transformed into other forms of energy.
A useful way to visualise the deformation during
collision is in terms of a ‘compressed spring’. If
the ‘spring’ connecting the two masses regains
its original shape without loss in energy, then
the initial kinetic energy is equal to the final
kinetic energy but the kinetic energy during the
collision time ∆t is not constant. Such a collision
is called an elastic collision. On the other hand
the deformation may not be relieved and the two
bodies could move together after the collision. A
collision in which the two particles move together
after the collision is called a completely inelastic
collision. The intermediate case where the
deformation is partly relieved and some of the
initial kinetic energy is lost is more common and
is appropriately called an inelastic collision.

5.11.2  Collisions in One Dimension

Consider first a completely inelastic collision
in one dimension. Then,  in Fig. 5.10,

 θ 
1
 = θ 

2
 = 0

 m
1
v

1i
 = (m

1
+m

2
)v

f  
  (momentum conservation)

 
1

1

1 2

f i

m
v v

m m
=

+                             (5.22)

The loss in kinetic energy on collision is

2 2

1 1 2

1 1

2 2
1i fK m v m m v∆ = − +( )

    

2

2 21

1 1 1

1 2

1 1

2 2
i i

m
m v v

 m m
= −

+
    [using Eq. (5.22)]

= −
+











1

2
11 1

2 1

1 2

m v
m

m m
i

21 2
1

1 2

1

2
i

m m
v

m m
=

+

which is a positive quantity as expected.

Consider next an elastic collision.  Using the
above nomenclature with θ

1
 = θ

2
 = 0, the

momentum and kinetic energy conservation
equations are

m
1
v

1i
 = m

1
v

1f
 + m

2
v

2f
(5.23)

2 2 2

1 1 1 1 2 2i f fm v m v m v= + (5.24)

From  Eqs. (5.23)  and (5.24) it follows that,

1 1 2 1 1 1 2 1
( ) ( )i f i f f fm v v v m v v v− = −

or, 2 2

2 1 1 1 1( )f i f i fv v v v v− = −

1 1 1 1( )( )i f i fv v v v= − +

Hence,  2 1 1f i fv v v∴ = + (5.25)

Substituting this in Eq. (5.23), we obtain

1 2
1 1

1 2

( )
f i

m m
v v

m m

−
=

+ (5.26)

and
1 1

2

1 2

2 i
f

m v
v

m m
=

+ (5.27)

Thus, the ‘unknowns’ {v
1f
, v

2f
} are obtained in

terms of the ‘knowns’ {m
1
, m

2
, v

1i
}. Special cases

of our analysis are interesting.

Case I : If the two masses are equal

v
1f
 = 0

v
2f
 =  v

1i

The first mass comes to rest and pushes off the
second mass with its initial speed on collision.

Case II : If one mass dominates, e.g. m
2
 > > m

1

v
1f
  ~ − v

1i
      v

2f
 ~ 0

The heavier mass is undisturbed while the
lighter mass reverses its velocity.
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⊳

⊳

Example 5.11  Slowing down of neutrons:
In a nuclear reactor a neutron of high
speed (typically 107 m s–1) must be slowed
to 103 m s–1 so that it can have a high

probability of interacting with isotope 
92

235
U

and causing it to fission. Show that a
neutron can lose most of its kinetic energy
in an elastic collision with a light nuclei
like deuterium or carbon which has a mass
of only a few times the neutron mass.  The
material making up the light nuclei, usually
heavy water (D

2
O) or graphite, is called a

moderator.

Answer  The initial kinetic energy of the neutron
is

2

1 1 1

1

2
i iK m v=

while its final kinetic energy from Eq. (5.26)

K m v m
m m

m m
vf f i1 1 1

2

1
1 2

1 2

2

1

21

2

1

2
= =

−
+







    

The fractional kinetic energy lost is

f
K

K

m m

m m

f

i

1

1

1

1 2

1 2

2

= =
−
+







while the fractional kinetic energy gained by the
moderating nuclei K

2f 
/K

1i 
 is

f
2
 = 1 − f

1 
(elastic collision)

( )
1 2

2

1 2

4m m

m m
=

+

One can also verify this result by substituting
from Eq. (5.27).

For deuterium m
2
 = 2m

1 
and we obtain

f
1
 = 1/9  while f

2
 = 8/9.  Almost 90% of the

neutron’s energy is transferred to deuterium. For
carbon f

1
 = 71.6% and f

2
 = 28.4%.  In practice,

however, this number is smaller since head-on
collisions are rare. ⊳

If the initial velocities and final velocities of
both the bodies are along the same straight line,
then it is called a one-dimensional collision, or
head-on collision. In the case of small spherical
bodies, this is possible if the direction of travel
of body 1 passes through the centre of body 2
which is at rest. In general, the collision is two-

dimensional, where the initial velocities and the
final velocities lie in a plane.

5.11.3  Collisions in Two Dimensions

Fig. 5.10 also depicts the collision of a moving

mass m
1
 with the stationary mass m

2
. Linear

momentum is conserved in such a collision.

Since momentum is a vector this implies three

equations for the three directions {x, y, z}.

Consider the plane determined by the final

velocity directions of m
1 
and m

2 
and choose it to

be the x-y plane. The conservation of the

z-component of the linear momentum implies

that the entire collision is in the x-y plane. The

x- and y-component equations are

m
1
v

1i
 = m

1
v

1f
 cos θ 

1
 + m

2
v

2f
 cos θ 

2
     (5.28)

0  = m
1
v

1f
  sin θ

1
 −  m

2
v

2f
 sin θ

2
        (5.29)

One knows {m
1
, m

2
, v

1i
} in most situations.  There

are thus four unknowns {v
1f

, v
2f

, θ
1 
and θ

2
}, and

only two equations. If θ 
1 

=
 
θ 

2 
= 0, we regain

Eq. (5.23) for one dimensional collision.

If, further the collision is elastic,

2 2 2

1 1 1 1 2 2

1 1 1

2 2 2
i f fm v m v m v= + (5.30)

We obtain an additional equation. That still
leaves us one equation short.  At least one of
the four unknowns, say θ 

1
, must be made known

for the problem to be solvable. For example, θ
1

can be determined by moving a detector in an
angular fashion from the x  to the y  axis. Given
{m

1
, m

2
, v

1i
, θ

1
} we can determine {v

1f
, v

2f
, θ

2
}

from Eqs. (5.28)-(5.30).

Example 5.12  Consider the collision
depicted in Fig. 5.10 to be between two
billiard balls with equal masses m

1
 = m

2
.

The first  ball  is  called the cue while the
second ball is called the target. The
billiard player wants to ‘sink’ the target
ball in a corner pocket, which is at an
angle θ

2
 = 37°. Assume that the collision is

elastic and that friction and rotational
motion are not important.  Obtain θ 

1
.

Answer   From momentum conservation, since
the masses are equal

2f1f1i vvv +=

or ( ) ( )2

1 2 1 21iv = + ⋅ +v v v vf f f f

          
2 2

1 2 1 22 .f f f fv v= + + v v
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( ){ }2 2
1 2 1 2 1 2 cos  37  f f f fv v v v θ= + + + ° (5.31)

Since the collision is elastic and m
1
 = m

2
 it follows

from conservation of kinetic energy that

2 2 2
1 1 2  i f fv v v= + (5.32)

Comparing Eqs. (5.31) and (5.32), we get

cos (θ
1
 + 37°) = 0

or θ
1
 + 37° = 90°

Thus,    θ
1
 = 53°

This proves the following result :  when two equal
masses undergo a glancing elastic collision with
one of them at rest, after the collision, they will
move at right angles to each other.                ⊳

The matter simplifies greatly if we consider

spherical masses with smooth surfaces, and

assume that collision takes place only when the
bodies touch each other. This is what happens

in the games of marbles, carrom and billiards.

In our everyday world, collisions take place only
when two bodies touch each other. But consider

a comet coming from far distances to the sun, or

alpha particle coming towards a nucleus and
going away in some direction. Here we have to

deal with forces involving action at a distance.

Such an event is called scattering. The velocities
and directions in which the two particles go away

depend on their initial velocities as well as the

type of interaction between them, their masses,
shapes and sizes.

SUMMARY

1. The work-energy theorem states  that  the change in kinetic energy of a body is the work
done by the net force on the body.

K
f
 - K

i
 = W

net

2. A  force is conservative if (i) work done by it on an object is path  independent and
depends only on the end points {x

i
, x

j
}, or (ii) the work done by the force is zero for an

arbitrary closed path taken by the object such that it returns to its initial position.
3. For a conservative force in one dimension, we may define a potential energy function V(x)

such that

F x
V x

x
( ) = −

( )d

d

or V V = F x  xi f

x

x

i

f

− ( )∫ d

4. The principle of conservation of mechanical energy states that the total mechanical
energy of a body remains constant if the only forces that act on the body are conservative.

5. The gravitational potential energy of a particle of mass m at a height x  about the earth’s
surface is

V(x) = m g x

where the variation of g with height is ignored.

5. The elastic potential energy of a spring of force constant k  and extension x is

V x    k x( ) =
1

2

2

7. The scalar or dot product of two vectors A and B is written as A.B  and is a scalar
quantity given by :A.B = AB cos θ,  where θ  is the angle between A and B.  It can be
positive, negative or zero depending upon the value of θ. The scalar product of two
vectors can be interpreted as the product of magnitude of one vector and component
of the other vector along the first vector. For unit vectors :

ˆ ˆ ˆ ˆ ˆ ˆi i j j k k⋅ = ⋅ = ⋅ =1  and ˆ ˆ ˆ ˆ ˆ ˆi j j k k i⋅ = ⋅ = ⋅ = 0

Scalar products obey the commutative and  the distributive laws.
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POINTS TO PONDER

1. The phrase ‘calculate the work done’ is incomplete. We should refer (or imply
clearly by context) to the work done by a specific force or a group of forces on a
given  body over a certain displacement.

2. Work done is a scalar quantity. It can be positive or negative unlike mass and
kinetic energy which are positive scalar quantities. The work done by the friction
or viscous force on a moving body is negative.

3. For two bodies, the sum of the mutual forces exerted between them is zero from
Newton’s Third Law,

F
12  

+  F
21 

 =  0

But the sum of the work done by the two forces need not always cancel, i.e.

W
12  

+ W
21  

≠  0

However, it may sometimes be true.

4. The work done by a force can be calculated sometimes even if the exact nature of
the force is not known. This is clear from Example 5.2 where the WE theorem is
used in such a situation.

5. The WE theorem is not independent of Newton’s Second Law. The WE theorem
may be viewed as a scalar form of the Second Law. The principle of conservation
of mechanical energy may be viewed as a consequence of the  WE theorem for
conservative forces.

5. The WE theorem holds in all inertial frames. It can also be extended to non-
inertial frames provided we include the pseudoforces in the calculation of the
net force acting on the body under consideration.

7. The potential energy of a body subjected to a conservative force is always
undetermined upto a constant. For example, the point where the potential
energy is zero is a matter of choice. For the gravitational  potential energy mgh,
the zero of the potential energy is chosen to be the ground. For the spring
potential energy kx2/2 , the zero of the potential energy is the equilibrium position
of the oscillating mass.

8. Every force encountered in mechanics does not have an associated potential
energy. For example, work done by friction over a closed path is not zero and no
potential energy can be associated with friction.

9. During a collision : (a) the total linear momentum is conserved at each instant of
the collision ; (b) the kinetic energy conservation (even if the collision is  elastic)
applies after the collision is over and does not hold at every instant of the collision.
In fact the two colliding objects are deformed and may be momentarily at rest
with respect to each other.
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EXERCISES

5.1 The sign of work done by a force on a body is important to understand.  State carefully
if the following quantities are positive or negative:
(a) work done by a man in lifting a bucket out of a well by means of a rope tied to the

bucket.
(b) work done by gravitational force in the above case,
(c) work done by friction on a body

sliding down an inclined plane,
(d) work done by an applied force on

a body moving on a rough
horizontal plane with uniform
velocity,

(e) work done by the resistive force of
air on a vibrating pendulum in
bringing it to rest.

5.2 A body of mass 2 kg initially at rest
moves under the action of an applied
horizontal force of 7 N on a table with
coefficient of kinetic friction = 0.1.
Compute the
(a) work done by the applied force in

10 s,
(b) work done by friction in 10 s,
(c) work done by the net force on the

body in 10 s,
(d) change in kinetic energy of the

body in 10 s,

and interpret your results.

5.3 Given in Fig. 5.11 are examples of some
potential energy functions in one
dimension. The total energy of the
particle is indicated by a cross on the
ordinate axis. In each case, specify the
regions, if any, in which the particle
cannot be found for the given energy.
Also, indicate the minimum total
energy the particle must have in each
case. Think of simple physical contexts
for which these potential energy shapes
are relevant.

Fig. 5.11

Reprint 2025-26



WORK, ENERGY AND POWER 89

5.4 The potential energy function for a
particle executing linear simple
harmonic motion is given by V(x) =

kx2/2, where k  is the force constant
of the oscillator.  For k  = 0.5 N m-1,
the graph of V(x)  versus  x  is shown
in Fig. 5.12.  Show that a particle of
total energy 1 J moving under this
potential must ‘turn back’ when it
reaches x  = ± 2 m.

5.5 Answer the following :
(a) The casing of a rocket in flight

burns up due to friction.  At
whose expense is the heat
energy required for burning
obtained?  The rocket or the
atmosphere?

(b) Comets move around the sun
in highly elliptical orbits.  The
gravitational force on the
comet due to the sun is not
normal to the comet’s velocity
in general.  Yet the work done by the gravitational force over every complete orbit
of the comet is zero.  Why ?

(c) An artificial satellite orbiting the earth in very thin atmosphere loses its energy
gradually due to dissipation against atmospheric resistance, however small. Why
then does its speed increase progressively as it comes closer and closer to the earth ?

(d) In Fig. 5.13(i) the man walks  2 m carrying a mass of 15 kg on his hands. In Fig.
5.13(ii), he walks the same distance pulling the rope behind him. The rope goes
over a pulley, and a mass of 15 kg hangs at its other end. In which case is the work
done greater ?

5.6 Underline the correct alternative :
(a) When a conservative force does positive work on a body, the potential energy of

the body increases/decreases/remains unaltered.
(b) Work done by a body against friction always results in a loss of its kinetic/potential

energy.
(c) The rate of change of total momentum of a many-particle system is proportional

to the external force/sum of the internal forces on the system.
(d) In an inelastic collision of two bodies, the quantities which do not change after

the collision are the total kinetic energy/total linear momentum/total energy of
the system of two bodies.

5.7 State if each of the following statements is true or false.  Give reasons for your answer.
(a) In an elastic collision of two bodies, the momentum and energy of each body is

conserved.
(b) Total energy of a system is always conserved, no matter what internal and external

forces on the body are present.
(c) Work done in the motion of a body over a closed loop is zero for every force in

nature.
(d) In an inelastic collision, the final kinetic energy is always less than the initial

kinetic energy of the system.

5.8 Answer carefully, with reasons :
(a) In an elastic collision of two billiard balls, is the total kinetic energy conserved

during the short time of collision of the balls (i.e. when they are in contact) ?
(b) Is the total linear momentum conserved during the short time of an elastic collision

of two balls ?

Fig. 5.13

Fig. 5.12
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(c) What are the answers to (a) and (b) for an inelastic collision ?
(d) If the potential energy of two billiard balls depends only on the separation distance

between their centres, is the collision elastic or inelastic ?  (Note, we are talking
here of potential energy corresponding to the force during collision, not gravitational
potential energy).

5.9 A body is initially at rest. It undergoes one-dimensional motion with constant
acceleration.  The power delivered to it at time t is proportional to

(i) t1/2  (ii) t (iii) t3/2 (iv)   t2

5.10 A body is moving unidirectionally under the influence of a source of constant power.
Its displacement in time t

 
is proportional to

(i) t1/2  (ii) t (iii) t3/2 (iv)   t2

5.11 A body constrained to move along the z-axis of a coordinate system is subject to a
constant force F given by

Nˆ 3ˆ 2ˆ  kjiF ++−=

where k ,j ,i ˆˆˆ  are unit vectors along the x-, y- and z-axis of the system respectively.

What is the work done by this force in moving the body a distance of 4 m along the
z-axis ?

5.12 An electron and a proton are detected in a cosmic ray experiment, the first with kinetic
energy 10 keV, and the second with 100 keV.  Which is faster, the electron or the
proton ? Obtain the ratio of their speeds. (electron mass = 9.11×10-31 kg, proton mass
= 1.67×10–27 kg, 1 eV = 1.60 ×10–19 J).

5.13 A rain drop of radius 2 mm falls from a height of 500 m above the ground.  It falls with
decreasing acceleration (due to viscous resistance of the air) until at half its original
height, it attains its maximum (terminal) speed, and moves with uniform speed
thereafter.  What is the work done by the gravitational force on the drop in the first
and second half of its journey ? What is the work done by the resistive force in the
entire journey if its speed on reaching the ground is 10 m s–1  ?

5.14 A molecule in a gas container hits a horizontal wall with speed 200 m s–1 and angle 30°
with the normal, and rebounds with the same speed.  Is momentum conserved in the
collision ?  Is the collision elastic or inelastic ?

5.15 A pump on the ground floor of a building can pump up water to fill a tank of volume 30 m3

in 15 min.  If the tank is 40 m above the ground, and the efficiency of the pump is 30%,
how much electric power is consumed by the pump ?

5.16 Two identical ball bearings in contact with each other and resting on a frictionless
table are hit head-on by another ball bearing of the same mass moving initially with a
speed V.  If the collision is elastic, which of the following  (Fig. 5.14) is a possible result
after collision ?

Fig. 5.14
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5.17 The bob A of a pendulum released from 30o to the
vertical hits another bob B of the same mass at rest
on a table as shown in Fig. 5.15.  How high does
the bob A rise after the collision ? Neglect the size of
the bobs and assume the collision to be elastic.

5.18 The bob of a pendulum is released from a horizontal
position. If the length of the pendulum is 1.5 m,
what is the speed with which the bob arrives at the
lowermost point, given that it dissipated 5% of its
initial energy against air resistance ?

5.19 A trolley of mass 300 kg carrying a sandbag of 25 kg
is moving uniformly with a speed of 27 km/h on a
frictionless track.  After a while, sand starts leaking
out of a hole on the floor of the trolley at the rate of
0.05 kg s–1.  What is the speed of the trolley after the entire sand bag is empty ?

5.20 A body of mass 0.5 kg travels in a straight line with velocity  v =a x3/2  where a = 5 m–1/2  s–1.
What is the work done by the net force during its displacement from x = 0 to
x = 2 m ?

5.21 The blades of a windmill sweep out a circle of area A.  (a) If the wind flows at a
velocity v  perpendicular to the circle, what is the mass of the air passing through it
in time t ?  (b) What is the kinetic energy of the air ?  (c) Assume that the windmill
converts 25% of the wind’s energy into electrical energy, and that A = 30 m2, v = 36
km/h and the density of air is 1.2 kg m–3.  What is the electrical power produced ?

5.22 A person trying to lose weight (dieter) lifts a 10 kg mass, one thousand times, to a
height of  0.5 m each time. Assume that the potential energy lost each time she
lowers the mass is dissipated. (a) How much work does she do against the gravitational
force ?  (b) Fat supplies 3.8 × 107J of energy per kilogram which is converted to
mechanical energy with a 20% efficiency rate.  How much fat will the dieter use up?

5.23 A family uses 8 kW of power. (a) Direct solar energy is incident on the horizontal
surface at an average rate of 200 W per square meter.  If 20% of this energy can be
converted  to  useful  electrical  energy, how large an area is needed to supply 8 kW?
(b) Compare this area to that of the roof of a typical house.

Fig. 5.15
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